$$
\begin{align*}
& 0<\mu<0,010913 \ldots ; 0,016376 \ldots<\mu<\mu_{1}=0,024293 \ldots \tag{8.5}\\
& \mu_{1}<\mu<0,038520 \ldots
\end{align*}
$$

system (5.3) has no other solution than the trivial. Hence we have the following theorem.
Theorem 5. The triangular libration points of the three-dimensional restricted threebody problem is Lyapunov stable for all values of the parameter μ from the interval (8.3).

REFERENCES

1. ARNOLD V.I., Stability of the Hamiltonian equilibrium position of the system of ordinary differential equations in the general elliptic case. Dokl. AN SSSR, Vol. 137, No. 2, 1961.
2. ARNOLD V.I., Small denominators and problems of the stability of motion in classical and celestial mechanics. Uspekhi Matem. Nauk, Vol.18, No.6, 1963.
3. MOSER J., On invariant curves of area preserving mapping of an annulus. Nachrit. Akad. Wiss. Göttingen, Mat. Phys., No.1, 1962.
4. MOSER J., Lectures on Hamiltonian Systems. Mem. Amer. Math. Soc. Vol.81, 1968.
5. MARKEYEV A.P., On the stability of a canonical system with two degrees of freedom in the presence of resonance. PMM, Vol.32, No.4, 1963.
6. MARKEYEV A.P., On the problem of the stability of the equilibrium position of Hamiltonian systems. PMM, Vol.34, No.6, 1970.
7. SOKOL'SKII A.G., On the stability of an autonomous Hamiltonian system with two degrees of freedom in the case of equal frequences. PMM, Vol.38, Nos.5, 1974.
8. BIRKHOFF D., Dynamical Systems. Moscow-Leningrad, Gostekhizdat, 1948.
9. MARKEYEV A.P., Libration Points in Celestial Mechanics and Cosmodynamics. Moscow Nauka, 1978.
10. POINCARE A., New Methods of Celestial Mechanics. Col. Works, Vol.2. Moscow, Nauka, 1972. 11. DARBOUX G., Sur le probleme de Pfaff. Bul. Mathem. Astron. Vol.6, 1882.
11. KUNITSYN A.L. and MARKEYEV A.P., Stability in Cases of Resonance. Itogi, Nauki i Tekhniki. Obshchaya Mekhanika. Vol.4, 1979.
12. MARKEYEVA.P. and SOKOL'SKII A.G., Numerical investigation of the Lagrangian solutions of the elliptic restricted three-body froblen PMM, Vol.38, No.1, 1974.

Translateċ by J.J.D.
PMR:U.S.S.R., Vol.49,NC.3,pr. 281-289,1985
$0021-8928 / 85 \$ 10.00+0.00$
Printed in Great Eritain
Pergamor Journals Ltd.

estimate of the stability of a dynamic system on the basis OF THE QUASISTATIONARITY PRINCIPLE *

YU.N. VOLIN

The following probiem is formiated and solved: in what cases, and on what basis for examiring the stability of the stationary sclution of a "quasistationary" syster car we judge the stability of the stationary solution of the initiai systen ? The thecrems which formuiate the necessary and sufficient concitions of the stability are proved. It is shown how the results obtained car be usea to exarine the thermal stability of a chemical reactor.

1. Suppose it is requirei to exarine the stability of the stationary state of a dyramic system. When using Lyapunov's first method this problem reduces (if we do not consider special cases) to the problem of verifying the stabiiity of the zeroth solution of the linearized system. We will assime that the latter can be represented in the form

$$
\begin{equation*}
\frac{d y}{d t}=A y+B z . \quad \frac{d z}{a t}=C y-D z: \quad y \cong R^{r} . \quad z \cong R^{l} \tag{1.1}
\end{equation*}
$$

We will also introduce the notation $x=\left(y_{1} \ldots . y_{m}, z_{1}, \ldots, z_{l}\right)^{T}, m+l=n$, where the index T denotes transposition.

[^0]We will call the specified matrix stable (strongly stable), if all Re $\lambda_{i} \leqslant 0$ ($\operatorname{Re} \boldsymbol{\lambda}_{i}<0$). and unstable, if i exists, for which $\operatorname{Re} \lambda_{i}>0$, where λ_{i} are the eigenvalues of the matrix. Suppose

$$
F=\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|
$$

The problem consists of obtaining the conditions of the stability of the matrix F. Henceforth we will assume everywhere that D and F are non-degenerate.

Expressing z from the equation $C y .+D z=0$ and substituting it into the first Eq. (1.1), we will obtain a linearized "quasistationary" system

$$
\begin{equation*}
d y / d t=\left(A-B D^{-1} C\right) y=(A+B K) y=A^{*} y \tag{1.2}
\end{equation*}
$$

We will call the matrix A^{*} quasistationary.
We will distinguish the case $m=1$, which in practice is of independent importance.
We will formulate the following problem: under which conditions can we draw a conclusion from the stability or instability of the stationary state of the quasistationary system about the stability or instability of the stationary state of the initial system?

By virtue of the results connected with A.N. Tikhonov's theorem $/ 1 /$, it is natural to expect that if the stationary state of the z-system

$$
\begin{equation*}
d z / d t=D z \tag{1.3}
\end{equation*}
$$

is asymptotically stable and the system fairly rapialy relaxes to it, then the stability or instability of the stationary state of the quasistationary system determines the stability or instability of the stationary state of the initial system. It is interesting, however, to obtain working estimates enabling us to draw a conclusion about the stability or instability of the matrix F from the stability or instability of the matrix A^{*}. This paper is aimed at obtaining those estimates. Note that, as will follow from the results obtained below, an estimate of the rate of relaxation of the z-system is not needed in a large class of cases to obtain the necessary conditions of stability.

The formulation of part of the results of this paper is given in $/ 2 /$.
2. We will first obtain the necessary conditions of stability.

Lemma 1. The parity of the number of real positive eigenvalues (bearing in mind their multiplicity) of the matrix F is the product of the corresponding parities for matrices $A *$ anc D, determined using the rules of Boolean algebra: $P X P=O X O=P, P X O=0 X P=0$ (P denotes parity, O denotes odid parity).

Proof. We will use the foliowing represertation (see probler. 2.4, ch.l in /3/):

$$
\begin{equation*}
\operatorname{det} F-\prod_{i, \ldots 1}^{7 i} i_{i}-\mathrm{d} \cdot \mathrm{t} \cdot 1 * \cdot \ln : D \tag{2.1}
\end{equation*}
$$

where i_{i} are the eigervaiues of the matrix F. From (2.i) it foliows that: $i_{1} \ldots i_{n_{n}}=\left(i_{1}{ }^{*} \ldots\right.$ $\left.i^{\prime} m^{*}\right) \times\left(\mu_{1} \ldots \mu_{i}\right)$, where $\quad \lambda_{j}{ }^{*}, \mu_{:}$are the eigenvalues of the matrices A^{*} and D. All $i_{i}=0$ and, consequently, all $\quad i^{*} \neq 0$. Suppose the numbers of positive real eigenvalues of the matrices F, A^{*} and D equal $k_{1} \cdot k_{2}$ and k_{3} respectively. We have (since the number of complex eigenvalues of the $x \in a l$ matrix is even)

$$
\begin{aligned}
& \operatorname{sgD}\left(i_{1} \ldots \lambda_{n}\right)=(-1)^{r_{1} \lambda_{1}}, \operatorname{sgn}\left(\lambda_{1}^{*} \ldots \lambda_{m^{*}}^{*}\right)=(-1)^{\pi_{2}-i_{2}} \\
& \operatorname{sgn}\left(\mu_{1} \ldots \mu_{1}\right)=(-1)^{i-\lambda_{2}}
\end{aligned}
$$

Consequently, $(-1)^{h_{1}}=(-1)^{h_{2}+k_{3}}$ and the lemma is proved.
The following theorem: is a simple corollary of Lemma 1:
Theorem 1. Suppose the matrix D is stable. Then the instability of matrix F follows from the instability of the quasistationary matrix A^{*} when there is an odd number of positive real eigenvalues. When $m=1$ the instability of F follows from the instability of A^{*}.

Theorem 1 formulates the necessary conditions of stability. It is essential that there is an additional requirement about the odd number of positive real eigenavlues of the matrix A^{*} in the formulation of the theorem: in general the instability of the matrix F does not follow from the instability of the matrix A^{*}. A corresponding counter-example car be constructed for the case $n=3, m=2$.
3. Let us proceed to the sufficient conditions of stability. When deriving these conditions we will confine ourselves to the case $m=1$. For this case B is a row-vector, K is a column-vector and A and A^{*} are numbers.

Suppose further that $z^{*}=K y=-D^{-1} C y, \Delta z=z-z^{*}, \delta z=\Delta z /\left|z^{*}\right|$ when $z^{*} \neq 0$, where $\mid z$ is the Euclidean norm 2. We will assume that $C \neq 0$ (therefore, $K \neq 0$). After transformations we obtain

$$
\begin{align*}
& d y^{\prime} d t=\left(A^{*}+\operatorname{sgn}(y)|K| B \delta z\right) y=\bar{A} y \tag{3.1}\\
& d \Delta z / d t=D \Delta z-\bar{A} z^{*} \tag{3.2}\\
& d \delta z^{\prime} d t=D \delta z-\bar{A}(\delta z+L)(L=\operatorname{sgn}(y) K /|K| \tag{3.3}
\end{align*}
$$

Lemma 2. Suppose when $0 \leqslant t \leqslant t_{1}$

$$
\begin{equation*}
x(t)=R(t)+\int_{a}^{t} S(t, \tau) \Phi(x(\tau)) d \tau ; \quad x, R, \Phi \in R^{\beta} \tag{3.4}
\end{equation*}
$$

where S is a $\beta \times \beta$-matrix, and the functions $R(\cdot), S(\cdot, \cdot)$ and $\Phi(\cdot)$ are continuously differentiable. Suppose also

$$
\begin{aligned}
& r(t)=|R(t)|, \quad s=\max _{0 \leqslant \tau_{1}, \tau \leqslant t}\left|S\left(\tau_{1}, \tau_{2}\right)\right| \\
& |S|=\max _{|x|=1}\left|S_{x}\right|, \quad|\Phi(x)| \leqslant \varphi(|x|)
\end{aligned}
$$

and $\Psi(\cdot)$ is a non-decreasing function. Then, if the equation

$$
\begin{equation*}
\alpha(t)=r(t) \div \int_{0}^{t} s p(\alpha(\tau)) d \tau \tag{3.5}
\end{equation*}
$$

has a solution in $\left[0, t_{1}\right]$, the following estimate holds:

$$
|x(t)| \leqslant \alpha(t)
$$

Proof. Suppose $\alpha_{\varepsilon}(t)$ satisfies Eq. (3.5) with $r(t)$ replaced by $r_{\varepsilon}(t)=r(t) \div \varepsilon$, where ε is a small positive number. Suppose t^{\prime} is the minimum for which $\alpha_{\varepsilon}(t)=|z(t)|$. Then $t^{\prime}>0$ and $|x(t)|<\alpha_{\varepsilon}(t)$ when $: \because t<t^{\prime}$. But by virtue of the latter, and bearing in mind (3.4), we have

$$
|z(l)|<r_{\varepsilon}(f)-\int_{0}^{f} s \Phi\left(\alpha_{\varepsilon}(\theta)\right) d \theta-\alpha_{\varepsilon}\left(f^{\prime}\right)
$$

which leads to a contradition. Therefore $|x(t)| \leqslant z_{f}(t)$ for all $t \in\left[0, t_{1}\right]$. Letting $\varepsilon-0$, we will obtain the statement of the lemma.

Lemma 3.Suppose $\alpha_{2}(t)$ is a scalar function which satisfies the equation

$$
\begin{equation*}
\alpha_{2}(t)=r(t) \uparrow \int_{i}^{t} f_{2}\left(\alpha_{2}(\tau)\right) d \tau \tag{3.6}
\end{equation*}
$$

in $\left[0, t_{1}\right]$ and suppose $f_{2}(\alpha)$ is a non-decreasing function α, whilst $0 \leqslant f_{1}(\alpha) \leqslant f_{2}(\alpha)$ and the functions $r(t), f_{1}(\alpha) . f_{2}(\alpha)$ are continuously aifferentiable. Then the solution of the equation

$$
\begin{equation*}
a_{1}(t)=r(t)-\int_{0}^{t} f_{1}\left(\alpha_{1}(\tau)\right) d \tau \tag{3.7}
\end{equation*}
$$

exists in $\left[0, t_{1}\right]$ and for all $t \equiv\left[0, t_{1}\right]$ the following inequality holds:

$$
\alpha_{1}(t) \leqslant \alpha_{2}(t)
$$

Proof. Suppose first that $f_{1}(\alpha)<i_{2}(\alpha)$ for all α. In some neighbourhood $\left(t, t^{\prime}\right) \quad \alpha_{1}(t)$ exists and $\alpha_{1}(t)<\alpha_{2}(t)$ when $t>0$. It is obvious that $\alpha_{1}(t)$ can continue as long as the inequality $\alpha_{1}(t)<\alpha_{2}(t)$ holds. Suppose $t^{\prime \prime}$ is the minimum $t>t^{\prime}$ for which $\alpha_{1}(t)=\alpha_{2}(t)$. But $\alpha_{1}\left(t^{\prime \prime}\right)<\alpha_{2}\left(t^{\prime \prime}\right)$ follows from the conditions of the lemma, which implies a contradiction.

To prove the lema in the general case we will introduce $f_{2, \varepsilon}(\alpha)=f_{2}(x)-\varepsilon$ and then proceed to the limit as $\varepsilon-0$.

Lemma 4. Suppose when $t \equiv\left[0, t_{1}\right]$

$$
\begin{equation*}
\alpha(t)=r(t)-\int_{0}^{t} s a(\tau) d \tau \tag{3.8}
\end{equation*}
$$

and $s \geqslant 0, r(t) \geqslant 0$ anc the function $r(\cdot)$ is continuously differentiable. Then

$$
\begin{equation*}
\alpha(t) \leqslant r(t)-r_{\max }\left(e^{s t}-1\right) ; \quad r_{\max }=\max _{0 \leqslant \tau \leqslant ;} r(\tau) \tag{3.8}
\end{equation*}
$$

The statement of Lemma follows from the known representation of the solution of Eq. (3.8)

$$
\begin{equation*}
\alpha(t)=e^{a^{1}} \alpha_{0}+\int_{0}^{1} e^{\tau(t-\tau) r^{*}}(\tau) d \tau \tag{3.10}
\end{equation*}
$$

Suppose further that $A^{*}<0$. Consider the solution of Eq. (3.3) in the interval $\left.10, t_{1}\right]$, in which $|y(t)|>0$ (in this interval $\delta=(t)$ remains finite). By virtue of well-known results of the theory of ordinary differential equations $/ 4 /$ we have

$$
\begin{equation*}
\delta z(t)=F_{D}(t) \delta z_{0}-\int_{0}^{t} F_{D}(t-\theta)\left\{(\delta z(\theta))(\delta z(\theta)+L) d \theta ; \quad F_{D}(t)=z(t) z(0)^{-1}\right. \tag{3.11}
\end{equation*}
$$

where $z(t)$ is a fundamental matrix of the solutions of the uniform system (1.3), $\delta z_{0}=\delta z(0)$. Suppose matrix D is strongly stable. We will introduce the following parameters which characterize the relaxation processes of a uniform system to a stationary state:

$$
\begin{align*}
& t_{D}=\max _{x_{0}} \min _{t \rightarrow 0} t:\left|F_{D}(t) z_{0}\right|=1 t_{2}\left|z_{0}\right| \tag{3.12}\\
& q=\max _{0 \leqslant t \leqslant t_{D}}\left|F_{D}(t) z_{0}\right|, \quad\left|z_{0}\right|=|z(0)|=1 \tag{3.13}
\end{align*}
$$

The parameter t_{f} is the minimum time of the guaranteed half decrease of the norm of the indtial phase vector z_{i} (here considered as the relaxation time of the $z-s y s t e m$), and G is the maximum "buildup" of the phase vector when relaxing in accordance with Eq. (1.3) to the state $z=0$ during the time t_{D}. By virtue of the strong stability of matrix D the quantities t_{t} and q are finite, and $q \geqslant 1$.

To facilitate further understanding we will first outline the following considerations and logical transitions.

Consider the motion for which $y>0$. At some instant $t_{1} \leqslant t_{D}$ the equation $\left|F_{D}\left(t_{1}\right) \delta_{3}\right|=$ ${ }_{2}\left|\delta_{z_{0}}\right|$ occurs. We will find the conditions at $c_{0}>0$, for which any $\delta z(t)$ with $\left|\delta z_{0}\right| \leqslant c_{0}$ is limitec in $\left|0, t_{1}\right|$ anc

$$
\left|\int_{\theta}^{t_{2}} F(t-\theta) J(\delta z(\theta))(\delta z(\theta)-L) d \theta\right| \leqslant_{2} c_{0} c_{0}
$$

When these conditions nold the quantity $\delta(t)$ with $\delta_{i_{0}} \leqslant c_{0}$ is bounded over the whole interval $[0 .-\infty)$ and, at least, periodicaliy falls within the sphere V_{c} of radus c_{0} with its centre at the origin of coordinates. At the same time it appears that for all Sat $=$ $\Gamma_{c_{0}}$, with the exception of δz_{0} from some subspace of the space $E^{\prime}, \delta z(t) \rightarrow \delta z_{*}$ as $t \rightarrow+\infty$ and $\delta z_{*} \equiv V_{c}$ is the stationary point of system (3.3). Hence it follows that $A\left(\delta z_{*}\right)$ is an eigenvalue of the matrix F and $\bar{A}\left(\delta_{*}^{*}\right)=\max _{i} \operatorname{Re} i_{i}$. We will supplement the conditions obtained with the condition which guarantees that the inequalities $\bar{I}(\delta)<0$ hold when $\delta \equiv V_{c .}$. Then the asymptotic stability of the zeroth solution of system (l. 1) follows from the validity of the conditions introduced, and estimetes for the eigenvalue with a maximum real part are obtained.
we shall present some calculaticns. Applying Lemma 2 to Eg. (3.11), we obtain: 6 (h) \leqslant $a_{1}(t)$ for $i \leqslant t_{1}=t\left(\delta z_{0}\right) \leqslant t_{b}$, where

$$
\left.\alpha_{1}(t)=d(t) \div q ; A^{*}\left|t \div q \int_{0}^{t}\right| K| | B\left|\alpha_{0}^{*}(\theta) \div|A|, B\right| \alpha_{1}(\theta)+|A \cdot| \alpha_{1}(\theta)\right\} d \theta: \quad d(t)=\left|F_{D}(t) \delta z_{p}\right|
$$

(assuming that Eq. (3.24) has a solution). By virtue of Lema 3 , if a (t) satisfies equation

$$
\begin{align*}
& f=\square \text { (2: } B ; N ;-A^{*}!
\end{align*}
$$

In $\left[0, t_{1}\right\}$ and the inecuadity

$$
\alpha(t) \leqslant 1, \quad t \in\left[0, t_{1}\right]
$$

holds, then Eq. (3.14) has sezition and $\mid \delta z(t) \leqslant \alpha_{1}(t) \leqslant \alpha(t)$.
Suppose further that $\left|\delta_{\varepsilon_{0}}\right| \leqslant c_{0}, c_{0}>0_{0}$ Using Lemma 4 as applied to Eq. (3.15), we obtain the estimate

$$
\alpha(t)<d(t)+\cos _{0} g\left(e^{p^{t}}-1\right)+q t\left|A^{*}\right| e^{p t}
$$

It follows from (3.17) that inecuality (3.16) will nold if

$$
\begin{equation*}
c_{0} \leqslant q^{-1} e^{-\pi t_{2}}-\left|A^{*}\right| t_{1} \tag{3,18}
\end{equation*}
$$

Suppose at the instart t_{1}

$$
\begin{equation*}
\left|\delta_{z}\left(t_{1}\right)\right| \leqslant c_{0} \tag{3.10}
\end{equation*}
$$

 (3.19) holds if

$$
\begin{equation*}
c_{0} g\left(e^{p t_{1}}-!\right)+g t_{2}\left|A^{*}\right| e^{p p_{1}} \leqslant 1 / 2 c_{0} \tag{3.20}
\end{equation*}
$$

From (3.20) and the condition $c_{0}>0$ it follows that

$$
\begin{equation*}
c_{0} \geqslant \frac{q t_{1}\left|A^{*}\right| e^{p t_{1}}}{1_{2}-q\left(e^{p t_{1}}-1\right\rangle}, \quad q\left(e^{p t_{1}}-1\right) \leqslant \frac{1}{2} \tag{3.21}
\end{equation*}
$$

Suppose the following inequalities hold

$$
\begin{equation*}
0<c_{1}=\frac{q t_{\nu}\left|\cdot A^{*}\right| e^{p t_{D}}}{1 / 2-q\left(e^{p t_{D}}-1\right)}<\frac{1}{q} e^{-p t_{D}}-\left|A^{*}\right| t_{D}=c_{2} \tag{3,22}
\end{equation*}
$$

Then when $c_{1} \leqslant c_{0} \leqslant c_{2}$ inequalities (3.18) and (3.21) hold.
By considering the calculations in reverse order, we can verify that when conditions (3.22) hold, if $c_{1} \leqslant c_{0} \leqslant c_{2}$ and $\left|\delta_{i_{0}}\right| \leqslant c_{0}$, then $\delta_{2}(t)$ over the whole interval $[0,-\infty)$ remains all the time in a sphere of the unit radius and, at least periodically, falls within the sphere $V_{c_{0}}$.
We shall determine

$$
\begin{equation*}
R_{0}=\frac{\left|A^{*}\right|}{|\kappa||B|}\left(K=-D^{-1} C, A^{*}=A \div B K\right) \tag{3.23}
\end{equation*}
$$

Since (when $y>0) \bar{A}(\delta z)=A^{*}+|K| B \delta z$, the following condition holds:

$$
\begin{align*}
& \bar{A}(\delta z)<0 \text { when }|\delta z|<R_{0} \tag{3.24}\\
& \bar{A}(\delta z)=0 \text { when } \delta z=R_{0} B^{T}|B|
\end{align*}
$$

We will require the following inequality to hold:

$$
\begin{equation*}
c_{1}<R_{0} \tag{3.25}
\end{equation*}
$$

Then for $\delta z(t)$ the condition $\bar{A}(\delta z)<0$ periodically holds.
Theorem 2. Suppose the matrix D is strongly stable, $C \neq 0, A^{*}<0$ and the following inequality holds:

$$
\begin{equation*}
t_{L}\left|A^{*}\right|<\chi\left(R_{0} \cdot q\right) \tag{3.26}
\end{equation*}
$$

where $t_{D} . q$ and R_{0} are determined using conditions (3.12), (3.13) and (3.23), and $\chi\left(R_{0} . q\right)$ is the only root (for the variable x) of the equation

$$
\begin{align*}
& P\left(x, R_{0}, q\right)=\min \left(H_{0}, \frac{1}{q} \exp \left(-\not q\left(\frac{2}{R_{0}}+1\right)\right)-\%\right)- \tag{3.27}\\
& \left.\quad q \ldots \exp \left(\gamma q\left(\frac{2}{R_{c}}+1\right)\right) \frac{1}{2}-q\left(\exp \left(\% q\left(\frac{2}{R_{0}}+1\right)\right)-1\right)\right]^{-1}=0
\end{align*}
$$

in the interval

$$
\begin{equation*}
0<\%<\frac{\ln (1(-g)+1)}{2 R_{0} T 1}=\gamma_{1} \tag{3.28}
\end{equation*}
$$

Then the matrix F is strongiy stable, whilst the guantity $\dot{i}_{i *}$ (Re $i_{i *}=\max _{i}$ Re $\dot{\lambda}_{i}$) is real and satisfies the estimates

$$
\begin{equation*}
A^{*}-|K| B\left|c_{1} \leqslant \lambda_{i *} \leqslant A^{*}-|K \| B| c_{1}<0\right. \tag{3.29}
\end{equation*}
$$

Proof. The existence and unigueness of the root of Eq. (3.27) follows from the continuity and monotony of $P\left(\chi, R_{0} . q\right)$, if we bear in mind that $P\left(0, R_{0}, q\right)=\min \left(R_{0}, 1\right), P\left(\chi_{1}, R_{0} . g\right)=-\infty$. Further, as we can verify

$$
\begin{align*}
& c_{1}=\frac{q t_{I}\left|A^{*}\right| \exp \left(t_{D}\left|A^{*}\right|\left(2 R_{0} \div 1\right)\right)}{1_{2}-g\left(\operatorname{ex}_{F}\left(t_{D}\left|A^{*}\right|\left(2 / R_{0}-1\right)\right)-1\right)} \tag{3.30}\\
& c_{2}=\frac{1}{q} \exp \left(-t_{D}\left|A^{*}\right|\left(2 / R_{0}+1\right)\right)-t_{D}\left|A^{*}\right|
\end{align*}
$$

Therefore $P\left(t_{U}\left|A^{*}\right| . R_{0} . g\right)=\min \left(R_{0} . c_{2}\right)-c_{1}$ and condition (3.26) is the same as the condition

$$
\begin{equation*}
0<c_{1}<\min \left(R_{0}, c_{2}\right) \tag{3.31}
\end{equation*}
$$

Suppose the eigenvalues of the matrix F are different. Consider the motion of the point x of system (1.1) with initial conditions which satisfy the relations

$$
y(0)>0, \quad \delta z_{0}=(z(0)-K y(0))(|\AA| y(0)) \leqslant c_{0}=c_{1}
$$

and the motion $\delta z(t)$ corresponding to it. Using what has earlier been proved, the quantity δz (t) remains bounded when $0 \leqslant t<+\infty$ and, therefore, $y(t)>0$. (If for some t we have $y(t)=0$, then for this t we will have $|\delta z(t)|=+\infty$.) We will call these motions separate. Suppose ξ is a unit eigenvector, satisfying $\lambda_{i *}\left(\operatorname{Re} \lambda_{i *}=\max _{i} \operatorname{Re} \lambda_{i}\right)$. The quantity $\xi_{1} \neq 0$, since when $\xi_{1}=0$ separate motions exist, for which $\delta z(t)$ is not a bounded function. Therefore, $\lambda_{i *}$ and ξ are real (otherwise separate motions, for which $y(t)$ for fairly large t would complete the oscillations around zero, would exist).

We can assume that $\xi_{1}>0$. For all the separate motions, with the exception of those which are completed at some hyperplane determined by eigenvectors which differ from ξ, $x(t)$ $|x(t)| \rightarrow$ as $t \rightarrow+\infty$. For those motions

$$
\delta z(t) \rightarrow \delta z_{*}=\frac{\eta-\xi_{1} K}{\xi_{1}|K|}
$$

and this means that in the sphere $V_{e_{9}}$ system (3.3) has a stationary point. But $\bar{A}\left(\delta z_{*}\right)=\hat{\lambda}_{\text {i* }}$ (see (3.1)). Therefore, bearing in mind (3.25), we conclude that the estimates (3.29) hold and the matrix F is strongly stable.

To prove the theorem in the general case we will intorudce family of matrices $F(\sigma): F(\sigma)$ depends in a continuous way on $\sigma, F(0)=F, F(0)$ has different eigenvalues when $0 \neq 0$. As can be shown, q. t_{L}, A^{*}, K and B are continuous functions of the parameter σ (while $F(\sigma)$ remains strongly stable). Therefore for fairly small 0 the inequalities (3.31) hola and, therefore, estimates (3.29) hold. Froceeding to the limit as $\sigma \rightarrow 0$, we will obtain the statement of the theorem for $F(0)=F$. The theorem is proved.

The quantity $1 \cdot\left|A^{*}\right|$ characterizes the inertia of the quasistationary system, and t_{0} characterizes the inertia of the z-system. Therefore inequality (3.26) shows that from the inequality $A^{*}<0$ we can draw a conclusion about the stability of matrix F in those cases when the inertia of the z-syster is fairly small compared with that of the quasistationary system.

Note that the function $\%\left(R_{0}, q\right)$ decreases as q increases and R_{0} decreases.
Note 1 . In the formuiation of Theorem 2 it is assumed that $c \neq 0$ and, therefore, $k=0$. If $C=0$ then, as we can show, the eigenvalues of the matrix F include $A=A^{*}$ and the eigenvalues of the matrix D. The efore for this case the strong stability of F under the condition of strong stability of D and $A^{*}<U$ is trivial.

Note 2. The statement of Theorem 2 remains valid of the parameters t_{b} and g are replaced by their upper estimates, and the parameter R_{0} is replaced by its lower estimate. The validity of this statement follows from the fact that (see (3.30)) c_{1} is an increasing function and c_{2} is decreasing function of the parameters t_{D} and g.

To use Theorem 2 we need to how t_{D} and g or the upper estimates of these parameters. The Lyapunov-functics methoi is ar effective way of obtaining these estimates.

Theorer 3. Suppose $V^{(}(=)$is a positive definite uniform Lyapunov function of the z system (2.3) (thereby for $V^{\prime}(z)$ the conaition $V(a z)=a V^{\prime}(z)$ holds when $a>0$), which satisfies the conaitions

$$
\begin{align*}
& \frac{\max |:| \text { when }}{\min \mid z(z)=1}=q^{\prime} \\
& d \mathrm{~V}^{2} \mathrm{~d} \leqslant \mathrm{Er}(\mathrm{e}<0) \tag{3.33}
\end{align*}
$$

Then q^{\prime} and $t_{I}^{\prime}=\ln \left(2 c^{\prime}\right)|e|$ are upper estimates for g and t_{L}.
The statement of the theorer. for q^{\prime} is obvious. The statement for t_{r}^{\prime} follows from: Lemma 3.

Note 3. Note that for the asymptotic stability of the zeroth solution of (1.3) a uniform Iyapunov function always exists, satisfying the inequality (3.33) with $e=$ (Re μ) mar , where (Re $\mu\rangle_{\max }=\max _{\mathrm{i}} \mathrm{Re} \mu_{,}(\mu$, are eigenvaiues of the matrix D). In fact, confining ourselves to the non-singular case, we will assume that all μ_{1} are different. We will reduce D to a diagonal form using a non-degenerate linear transformation of S. We can show, by direct verification, that $y=(S z, \overline{5 i})$ is a uniform Lyapunov function for which inequality (3.33) holds with e= $(\text { Re } \mu)_{\text {max }}$.

It follows from the above that condition (3.26) ir. Theorem 2 can also be written ir the following form:

$$
\begin{equation*}
\frac{\mid A^{*} \ln \left(\eta^{2}\right)}{\left|(\operatorname{Re} \mu)_{\max }\right|}<\chi\left(R_{\theta}, Q^{*}\right) \tag{3,34}
\end{equation*}
$$

where g^{*} is the parameter which satisfies conaition (3.32) for Lyapuncv's function of the
z-system, for which inequality (3.33) holds with $e=(\text { Re } \mu)_{\text {max }}$.
When there are no direct analytical results in a number of cases the upper estimates for t_{D} and q can be found from the experimental data or on the basis of a combined approach which combines the analytical and experimental results.
4. In the theory of a thermal explosion the stability criterion, defined by the sign of the derivative $d Q i d T[5,6]$, where $Q=Q_{1}-Q_{2}, Q_{1}$ is the amount of heat dissipated in the reactor and Q_{2} is the amount withdrawn, is well known. The stationary states for which $d Q i d T<0$, are stable, and the states with $d Q!d T>0$ are unstable.

This result assumes, strictly speaking, that the dynamics of the process are determined by one differential equation. Tests of the analytical basis of this criterion as applied to a wider class of cases were only made for second-order systems (for an ideal-mixing reactor, whose dynamic process is determined by the temperature concentration). It was shown that for these systems the criterion of the sign of $d Q / d T$ generally gives the necessary - but not the sufficient - conditions of stability /7/. This criterion gives the sufficient conditons of stability when the relaxation time of the concentration model is substantially less than that of the thermal model $/ 7,8 /$. On the other hand, numerous calculational experiments show that the criterion of the sign of dQ/at obviously holds in an extremely wide class of cases.

We will use the result of paras. 2 and 3 to investigate the thermal stability of the stationary state of an ideal-mixing exothermic reactor. We will consider the following dynamic reactor model:

$$
\begin{align*}
& H_{\mathrm{T}} \frac{d T}{d t}=Q(T, C)=Q_{1}(T, C)-Q_{2}(T, C)= \tag{4.1}\\
& \quad \sum_{i}\left(-\Delta H_{i}\right) r_{i}(T, C)-\frac{C_{\mathrm{p}}\left(T-T_{0}\right)}{\tau}-K_{\mathrm{T}} S\left(T-T_{\mathrm{c}}\right) \\
& H_{\mathrm{c}} \frac{d C_{j}}{d t}=u_{j}(T, C)-\frac{C_{j}-C_{j 0}}{\tau}, \quad j=1,2, \ldots, l \tag{4.2}\\
& u_{j}=\sum_{i} \gamma_{i j} r_{i} \tag{4.3}
\end{align*}
$$

Here C and T are the vector of concentrations and temperature in the reactor, $C_{j 0}$ is the concentration of the j-th material at the reactor input, T_{0} is the temperature at the reactor input, t is the time, H_{T}, H_{c} are the heat and material holding capacities. ΔH_{i} is the thermal effect of the i-th reaction, C_{F} is the heat capacity, K_{T} is the heat transfer coefficient, S is the specific surface of the heat transfer, T_{c} is the coolant temperature, τ is the conditional contact time, r_{i} is the rate of the i-th reaction, u_{j} is the rate of formation of the j-th matter, and $\left(\gamma_{i j}\right)$ is the stoichiometric matrix.

We will call system (4.2) a concentration model with a fixed temperature T.
Suppose $\left(T_{s}, C_{s}\right)$ is the stationary solution of system (4.1), (4.2). The following theorem directly follows from Theorem 1 :

Theorem 4. Suppose the stationary solution C_{s} of the concentration model (wher $T=T_{s}$) is asymptotically stable. Then the condition

$$
\begin{equation*}
d Q \cdot d T\left(T_{s} \cdot C\left(T_{s}\right)\right) \leqslant 0 \tag{4.4}
\end{equation*}
$$

is the necessary condition of the stability of the solution $\left(T_{s}, C_{e}\right)$.
In Eq. (4.4) $C(T)$ is the quasistationary concentration, determined by the equations

$$
\begin{equation*}
u_{j}(T, C)-\left(C_{j}-C_{j 0}\right) \tau=0, j=1,2 \ldots, l \tag{4.5}
\end{equation*}
$$

Therefore, the criterion of the sign of $d Q d T$ generally gives the necessary condition of stability, if the stationary solution of the concentration model is asymptotically stable. We stress that this result holds without any demands on the relaxation time of the concentration model.

The asymptotic stability of the concentration model, which is required for the application of Theorem 4, holds in a wide class of cases (this also determines, first of all, the justification of separating the problem of thermal stability from the general problem of reactor stability). At the same time the presence of concentration stability can often be proved globally for a whole class of kinetic relations /9, 10/.

To use Theorem 2 (which formulates the sufficient conditions for stability) it is necessary to have, besides the proof of the asymptotic stability of the stationary solution of the concentration model, upper estimates of the parameters t_{D} and g also. Lyapunov's-
function method provides an effective approach to obtaining these estimates (and to proving the stability of the concentration model). We will write the equations of the concentration model

$$
\begin{align*}
& \frac{d \Delta C_{j}}{d t}=\sum_{k=1}^{l} p_{j k} \Delta C_{k}-\frac{\Delta C_{j}}{H_{c} \tau} \tag{4.1i}\\
& \left(p_{j_{k}}=\frac{1}{H_{c}} \frac{\partial u_{j}\left(T_{s} C_{j}\right\}}{d C_{k}}\right), \quad j=1,2, \ldots, l
\end{align*}
$$

We will term the following system a shortened model:

$$
\begin{equation*}
\frac{d \Delta C_{j}}{d t}=\sum_{k=1}^{1} p_{j k} \Delta C_{k}, \quad j=1,2, \ldots, l \tag{4.7}
\end{equation*}
$$

Theorem 5. Suppose the zero-th solution of system

$$
\begin{equation*}
\frac{d \Delta C_{j}}{d t}=\sum_{k=1}^{l} p_{j h} \Delta C_{k}-\frac{\Delta C_{j}}{H_{c}^{\tau_{1}}}, \quad \tau_{1}>\tau_{1}, j=1,2, \ldots, l \tag{4.8}
\end{equation*}
$$

is asymptotically stable and a uniform positive definite Iyapunov function exists for this system which satisfies estimate (3.32) (with z replaced by ΔC), and inequalities (4.4) hold and

$$
\frac{d q}{d T}\left(T_{:}, C\left(T_{:}\right)\right) \frac{\tau H_{c} \ln \left(2 q^{\prime}\right)}{1-\tau^{\prime} \tau_{1}}<\chi\left(R_{0}, q^{\prime}\right)
$$

Then the staticrary state of system (4.1)-(4.3) is asymptotically stable.
Proof. It follows from the uniformity of $V(\Delta C)$ that $V(\Delta C)=(\hat{\sigma} V \hat{\partial} \Delta C(\Delta C)) \Delta C$. We will obtain an estimate for $d T d t$ by virtue of Egs. (4.6)

$$
\frac{d Y}{d t}=\frac{d i}{d D_{2}} P \triangle C-\frac{1}{H_{c}^{T_{3}}}-\frac{\left(T_{1}-T\right) H}{H_{c} T_{3}}<-\frac{\left(\tau_{1}-\tau\right) H}{H_{c} \tau_{1}}<0
$$

The statement of the theorem is now a direct corcilary of Thecrem 3 .
Consifier the class of kinetic relations which satisfy the relations

$$
\begin{equation*}
p_{j j}<0, \quad p_{j k}>0 \quad \text { for } \quad j \neq l, \quad \sum_{j=1}^{l} p_{3}<0, \quad k=1,2, \ldots, l \tag{4.10}
\end{equation*}
$$

Note that (4.10) holds if there is no autocatalysis and each rate of reaction in each direction is determinea by one "ieajing" component.

For this class, as is well knomin and easily verified, $I=\Sigma\left|\Delta C_{j}\right|$ is a Lyapunov function of the shortened mojel (4.7). We car also show that $q^{\prime}=l$. Thus, for this class of kinetic relations concitior. (4.9) takes the form:

Condition (4.9) (assuring that $d(\| d T<0$ is equivalent to the conditen

$$
\begin{equation*}
\frac{T}{T}<⿲\left(R_{0} \cdot \theta^{\prime}\right)\left[\ln (-q)\left(1-\frac{K_{T} T}{i_{i}}-\frac{T}{T_{i}} \frac{d \varphi_{1}}{d T}\right)\right]^{-1} \tag{1}
\end{equation*}
$$

where $T^{\prime}=H_{T} C_{j}, T^{\prime \prime}=H_{T}$ (these quantities car. be considered the time constants of the themal and concentration moaeis).

For a catalytic reactor often

$$
1 \perp \frac{k_{T} S T}{r_{j}}-\frac{\tau}{r_{p}} \frac{d r_{0}}{d T}<2, \quad R_{0} \geqslant 1, \quad q \leqslant 2
$$

Then condition (4.11) will hols if $T^{\prime \prime}: T^{\prime}<0.005$. The latter conation usually holds (in /8/ an example is discussed for which $1=1$ and $T^{*} T=0,0 m \%$

In cases when there are no analytical results, experimental data can be included to justify the use of Theorems 1 and 2. Suppose kinetic analyses are carried out in a circulating laboratory reactor which operates in a mode that is close to that of ideal mixing /11/. In such a reactor the heat transfer conditions are usually very good and we can, in conformity with the definition of stability, confine ourselves to the concentration equations which in this case are the same as industrial ones for laboratory apparatus. It therefore follows from the stability of the stationary mode of the laboratory reactor that the concentration model of the industrial process (for equality of τ and $c_{j 0}$) is stable. At the same time the quartities t_{D} anc g can be estimatec using dynamic experimental data of the laboratory
apparatus.
If the concentration models of the laboratory and industrial reactors are different, the matter is more complex. Here also, however, experiments in the laboratory reactor can in some cases provide useful information for the application of Theorems 1 and 2. For example, for the case of a flowing-circulation laboratory reactor, as we can show, the following formula connecting the characteristic values holds:

$$
\begin{equation*}
\frac{1+\tau \gamma H_{\mathrm{e}} p^{\prime}}{\gamma}-\frac{1-\gamma}{\gamma} g\left(p^{\prime}\right)=1+\tau H_{\mathrm{c}} p^{\prime \prime} \tag{4.12}
\end{equation*}
$$

where $p^{\prime}, p^{\prime \prime}$ are characteristic values of p for the transmitting functions of the laboratory and industrial reactors, $g(p) I$ is the transmitting function of the feedback section in the laboratory reactor (I is a unit matrix), and γ is the ratio of the flow at the input to the laboratory reactor to the flow which passes through the reaction volume. It is assumed that the industrial reactor operates for the same $C_{j 0}$ as a laboratory reactor, and has $\tau=t_{0} / \gamma$, where t_{0} is the conditional contact time for the reaction volume of the laboratory reactor.
5. The importance of the conditions of stability obtained is determined in the following way.

The conditions of stability obtained on the basis of the quasistationarity principle have a physical meaning in a number of cases and enable us to obtain estimates of a general character. In particular, the criterion of the sign of the derivative $d Q d T$ in the problem of estimating the thermal stability of the reactor has a physical meaning.

One can also note the calculational simplicity of examining stability on the basis of conditions determined by Theorems land 2, which is particularly useful for a large-size zsystem and the necessity for frequent calculations of the stability of the stationary states of the process (with different parameters). The latter occurs, for example, if the process is optimized and the condition of stability figures as one of the optimization limitations /12/.

Finally, the conditions of stability obtained can be used to a certain extent when the dynamic equations of the object are not completely known. To use Theorems 1 and 2 it is sufficient to know the dynamic equations only for y_{i}. The remaining equations can be
stationary if the estimates of the parameters t_{D} and g are known from the experimental data or by analogy with other processes.

REFERENCES

1. VASIL'EVA A.B. and BUTUZOV V.F., Asymptotic expansions of solutions of singularly perturbed equations. Moscow: Nauka, 1973.
2. VOLIN YU.M. and MASCHEVA I.A., Estimate of the stability of a chemical reactor on the basis of the quasistationarity principle. In: Dynamics of the processes and apparatus of chemical technology. Mater. l-i Vses. konf., Veronezh: Izd-ye Voronezh politekhn. in-ta, 1983.
3. RAO S.R., Iinear statistical methods and their applications. Moscow: Nauka, 1968.
4. CODDINGTON E.A. and IEVINSON N., Theory of ordinary differertial equations. Moscow: Izd-vo inostr. lit., 1958.
5. FRANK-KAMENETSKII D.A., Diffusion and heat transfer in chamical kinetics. Moscow: Nauka, 1967.
6. ZEL'DOVICH YA.B., BARENBLATT G.I., LIBROVICH V.B. and MAKHVILADZE G.M., The mathematical theory of combustion and detonation. Moscow: Nauka, 1980.
7. SLIN'KO M.G., Definition of the conditions of stability for exothermic contact processes in a quasiliquid layer. Kinetics are Catalysis, Vol.1, Ne.1, 1960.
8. GORIN V.N., BUROVOI I.A. and ROMM R.F., The dynamics of one class of chemical processes. Teoret, osnovy khimich. tekhnologii, Vol.5, No.3, 1971.
9. CLARKE E.L., Graph theoretic approach to the stability analysis of steady state chemical reaction networks.- J. Chem. Phys., Vol.60, No.4, 1974.
10. CLARKE E.L., Stability analysis of a model reaction network using graph theory. - J. Chem. Phys., Vol.60, No.4, 1974.
11. CARBERRY J.J., Designing laboratory catalytic reactors. - Indus. and Engng Chem., Vol. 56, No.11, 1964.
12. VOLIN YU.M., MASCHEVA L.A. and SLIN'KO M.G., Problems of the stability of chemical processes in optimization problers. Teoret. osnovy khimich. tekhnologii, Vol.15, No.6, 1981.

[^0]: *Prik1. Mater. Mekhan.,49, 3, 36e-376,1985

